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Frequency-Domain Solution for Coupled Striplines

with Crossing Strips

Guang-Wen Pan, Kenneth S. Olson, and Barry K. Gilbert

Abstract —In this paper we present a frequency-domain approach to
the modefing of the propagation of short-rise-time digital pulses along
groups of coupled striplines which are overcrossed or undercrossed hy
orthogonally positioned signal conductors on adjacent signal planes in a
high-density circuit board or multichip module substrate. Although this
“crossing strip problem” has been described previously, most recently in
a contribution by Gu and Kong [11, the solution presented here has
several completely new features which are important in the application
of this method to real-world modeling problems in the following ways:
First, the new solution significantly simplifies the mathematical formu-

las which snm the multiple reflections and crosstalk components with

the primary digital pulse to generate the final waveform conformations

on the multiple conductors (four pages of equations in [11 are reduced
to only 16 lines). As a result, this method is much easier to implement
than earlier techniques, especially as a software kernel for a computer-
aided design tool. The method presented here also reduces the central
processing unit (CPU) time needed to execute these solutions by a
nontrivial factor of 2–3 in comparison with the earlier method presented
by Gu and Kong. Second, the new method removes the earlier constraint
that the crossing strips on the orthogonal signal layer be uniformly
spaced; that is, nonuniformly spaced crossing strips are now snpported
by the mathematical derivation. Third, the new derivation allows for
nonideal (i.e., “real-world”) voltage sources, in contrast to methods

described previously (e.g. [11), which have permitted only ideal step and
ramp signals to be directly applied to the signal nets.

I. INTRODUCTION

In this paper we present a frequency-domain approach to the

modeling of the propagation of short-rise-time digital pulses

along groups of coupled striplines which are overcrossed or

undercrossed by orthogonal conductors on adjacent signal planes

in a circuit board or multichip module (MCM) substrate.

The problem of modeling the propagation of short-rise-time

digital signals along coupled striplines overcrossed or under-

crossed by unshielded, orthogonal signal lines has been de-

scribed several times in the past, most recently in a contribution

by Gu and Kong [1]. In that paper, the effects of the crossing

lines on the signal-carrying lines were modeled as a change in

the characteristic impedance and two small “fringing field”

capacitors at the leading and trailing edges of each overcrossing

line, as depicted in Figs. 1 and 2. The model used by Gu and

Kong was in turn based on a simple but accurate closed-form

expression for charge and current distribution on parallel-plate

striplines first proposed by Kuester and Chang [2]. The Gu and

Kong solution was based on the use of Laplace transforms to

determine the transient responses of a coupled pair of striplines

having periodic crossing lines not shielded from the striplines.

Gu and Kong modeled the effects of crosstalk on the “listening

lines,” generated by the primaty propagating wavefronts on the

“driven lines,” by the superposition of even- and odd-mode

components on the listening lines. A clarification to this paper

has also appeared recently [3]. It is also of interest to note that
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because the lines in this type of structure have frequently been

assumed to be Iossless and dispersionless, a time-domain solu-

tion to this problem is also possible [4], [5]. While these physical

models have provided reasonably good approximate results [1],

the transient analysis of the propagating waves is rather cumber-

some, both in derivation and in software implementation.

Conversely, the solution presented here has several com-

pletely new features which are important in the application of

this method to real-world modeling problems. One is that the

frequency-domain solution proposed here is shown to be much

more compact and efficient than either the Laplace transform

or the time-domain solutions described by previous workers.

That is, this method significantly simplifies the mathematical

formulas which sum the multiple reflection and crosstalk com-

ponents with the primary digital pulse to generate the final

waveform conformation on the multiple conductors (four pages

of equations in [1] are reduced to only 16 lines). As a result, this

method is much easier to implement, especially as a software

kernel for a computer-aided design tool. The method presented

here also reduces the central processing unit (CPU) time needed

to execute these solutions by a not insignificant factor of 2-3 in

comparison with the earlier method [1]. A second feature is that

the new method removes the constraint that the crossing strips

on the orthogonal interconnect layer be uniformly separated

from one another. That is, unevenly spaced crossing strips

(which are commonly found in printed wiring boards and multi-
chip modules) are now supported by the mathematical deriva-
tion. A third feature is that the new derivation allows for
nonideal (i.e., “real-world”) voltage sources, in contrast to the
method described in [1], which permits only ideal step and ramp
signals to be directly applied.

II. FORMULATION

We wish to determine the transient responses at the near and
far ends of a pair of coupled transmission lines with k crossing

strips. Our method of solution involves two principal steps.

First, we establish the odd- and even-mode equivalent circuit

models as described in [1]. Second, a frequency-domain solution

is presented for the transient responses of the two equiva~lent

circuit models. The resulting waveforms are converted into the
time domain via an FFT, and then the voltage responses of the

actual structure are found from superposition.

Fig. 2(a) shows the basic configuration of one of the circuit

models (for either the even mode or odd mode), represented as

a series of transmission line segments cascaded together. The

electromotive force, V,n, is applied at the far left. We wish to

find the voltage response at the near end, V~, and the far end,

VF, of the equivalent circuit. A discontinuity capacitance, Cd,

appears at each line terminal, representing the effect of the

edge of a crossing strip. The near-end voltage, VO1,far-end
voltage, I&, near-end current, 1.,, and far-end current, lD,, at
the ends of’ each transmission line segment are described by the
following equations (for further explanation, see [6]):

P’o, = GO, + e-J6’D’GD, (1)

1
l., = ~ (GO – e–]@’D’GDL)

,

VD, = e-JBDtGO + GD

ID, = ~ (e ‘]@’D’Go, – GDt )
1

(2)

(3)

(4)
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Fig. 1. A pair of coupled striplines with k crossing strips. There is no shielding between orthogonal lines.

Equivalent Circuit Representation for Coupled Striplines with K Crossing Strips
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Fig. 2. (a) Even- or odd-mode equivalent circuit. VN and VF may be solved for each mode; then, using superposition [7],
the actual near-end and far-end voltage responses may be found. (b) Directions of currents l., and 1~,. Note that l., enters
transmission line segment i from the source end and ID, exits transmission line segment i from the load end. Transmission

line segment z has a length D,.

where i is the transmission line segment under consideration, D,

is the length of line segment i, Z, is the characteristic impedance

of line segment i, ~, = WK and GO, and GD, are defined in

[6, eqs. (19)-(22)] as the near-end incident and far-end reflected

“modal intensities, ” respectively, of line segment i. The values

of C,, L,, Zi, and Cd may be found from equations presented in

[1] and [7]. Fig. 2(b) shows the defined direction of the currents

10 and ID, on line segment i. By examining the first transmis-

si& line segment, we see that VN = Vol. Also, by examining the

last transmission line segment (2k + 1), we note that VF = VD,,+,.

We need to describe mathematically the connectivity of-the

transmission line segments at each terminal. Once the equations

at each line terminal are found (eqs. (5), (7), (8), and (1 l)), we

can incorporate (l)–(4) into them to obtain a set of linear

equations with the modal intensities of each line segment (Go,

and GD, ) as the unknowns (eqs. (6), (9), (10), and (12)). Then,

once the modal intensities are found, we simply solve (1) and (3)

at the line ends to obtain the near-end and far-end modal

voltage responses, VN and VF (that is, VOI and P’&+ ~). The

voltage responses of the even and odd modes may be combined

as shown in [1] to obtain the actual voltage response waveforms

of the active and passive lines.

Looking at the source end of the cascaded transmission line

segments in the upper portion of Fig. 2(a), we see that V,, can

be described (in the frequency domain) in terms of the voltage

and current at the beginning of the first transmission line

segment (VOI and l.,):

Vol + R~Io, = ~n (5)

where R~ is the source resistance. l!ly substituting the right-hand

sides of (1) and (2) into (5), we obtain V,n in terms of the modal

intensities:

~n=(1+2)Go+(1-2)e-J’’D’G~‘6)
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Fig. 3. Transient response for the coupled stripline of Fig. 1 using an alternating (i.e., nonconstant) spacing between the

crossing strips of 0.875 mm and 0.375 mm, respectively, with a line width of 0.125 mm. Left panel: Near-end voltages. Right
paneb Far-end voltages. The rise time of the input signal is 5 ps.

For each intermediate terminal, two equations can be written,

one by equating the voltage at the end of the previous transmis-

sion line segment, i, with the voltage at the beginning of the

next transmission line segment, i +1, and the other by summing

the currents leaving the terminal:

(7)

(8)

Equations (7) and (8), rearranged in terms of the modal intensi-

ties, become

()= ~-J&DLGo + GD, – Go , – ~-JLi+ID,+IGD
t+ ,+1 (9)

and

O=(-++’@c)e-’”D’Go+(i+’oc)G~
1 1

+ —G —_e–J&+,DC+IG

Z,+l 0’+’ ZL+l
Dl+l. (lo)

At the load end of the cascaded transmission line system, the

voltage and current are related by

D,,+, = VF = R~ID,,+lv (11)

where RL is the load resistance and k is the number of crossing

strips. Equation (11), rewritten in terms of the modal intensities,

becomes

()

RL
o= l–— e ‘JL%k+&bk+@o

z~k + ~
,?. +,

()

RL
+ l+—

z
GDzk+l.

2k+l

If there are k crossing strips in the configuration,

(9), (10), and (12) result in 4k + 2 linear equations

(12)

then (6),

with un-

lois

knowns Go,, Go,,. . ., Go,,+, and GD,, GD,,. . . . GD2,+,. This set

of equations can be solved for each frequency using a mathemati-

cal library such as IMSL. Once the modal intensities are found,

the voltages at the near end and the far end, VN = V,, and

VF = vD,k+,, can be found from (1) and (3). By converting to the

time domain (via an inverse FFT), we can then obtain the

desired even- and odd-mode near- and far-end voltage re-

sponses.

The previous discussions are valid for both the even and the

odd mode with the corresponding even and odd parameters.

Therefore, the even and odd mode voltages at the near andl far

ends, namely, V{), V#), V~ej and VjO), can be evaluated.

Finally, the waveforms V~l) (at the near end of the active line),
V,$) (at the far end of the active line), V#) (at the near end of

the passive line), and Viz) (at the far end of the passive line) can

be obtained by the superposition equations [3]:

(13)

(16)

An example demonstrates the ability of the frequency-domain
method to simulate more generalized structures such as nonuni-

form spacing between the crossing strips. In this example,, we

employed slightly different numerical values for the dimensions

in Fig. 1; in particular, we varied the spacing between the

crossing strips in an alternation between 0.375 mm and 0.875

mm. The rise time of the signal injected into the driven line was

5 ps. Fig. 3 shows the voltage responses within this nonuniform

structure as calculated by the frequeney-domain method; 256
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Fig. 4. Simulated waveforms of near-end and far-end voltage transient responses for theoretical coupled stripline structure
in a comparison of the frequency-domain method presented here with the Laplace transform solution of [1].

samples were used for the FFT and inverse FFT in this example

and in Fig. 4. Of particular interest is the way in which the

spacing between crossing strips affects the ringing of the wave-

form. Looking at V(lll), we see that immediately after the

change in logic states, it appears that the duration of each

perturbation in the waveform is related to spacing between

crossing strips. Continuing in time, the definition of the wave-

form becomes less clear, as the reflections from additional

crossing strips reach the near end of the line.

III. CONCLUSION

Although the general case of an arbitrary number of asym-

metrical lines can be modeled by, for instance, the full-wave

solution, the spectral-domain analysis method, or the TLM

method, the physical model proposed by Gu and Kong [1]

utilizing results from Kuester and Chang [2] still provides a

straightforward yet excellent approximation to the problem of

parallel striplines with orthogonal, unshielded crossing lines.

The present paper has also employed this physical model. A

major advantage of this method over [1] and [2] lies in the fact

that it significantly reduces the mathematical formulas employed

in creating a summation of multiple transmitted and reflected

waves, from over four pages of equations [1] down to only 16

lines. Consequently, the new frequency-domain method de-

scribed here is much easier to comprehend theoretically and, of

equal significance and considerable importance, is also much
simpler to implement as a software kernel for an electromag-

netic modeling computer-aided design (CAD) tool. In addition,

any voltage input waveform may be used, as long as it can be

transformed accurately into the frequency domain by means of

an FFT, In comparison, the Laplace transform solution [1]

requires a ramp or step input. Further, as demonstrated by our

example, the frequency-domain method can also simulate un-

even spacing of the overcrossing strips on the orthogonal signal

layer. Thus, the degradation effects of the total number of

crossing strips, and of their spacing, can now be observed

directly in the simulation results. Uneven line spacing is directly

supported because in the determination of the set of 4k + 2

linear equations, each distance D, may be distinct for each

transmission line segment i. Fig. 4 shows a simulation of a

coupled stripline structure with 25 evenly spaced crossing strips,

in which the frequency-domain method developed here is com-

pared with the Laplace transform solution given in [1]. This

example contains evenly spaced crossing strips to show the

comparison. The accuracy of our method in comparison with

previously published results is evident from this figure.

Time-domain solutions to this type of problem have been

described previously; however, in our direct observation, the

time-domain solution of this type of electromagnetic structure

[4] is not particularly efficient in the solution of the type of

structure discussed here. The time-domain methods typically

handle only reflections at two ends of the transmission lines

(i.e., a “single source, single destination” interconnect), while

this method can simulate the effects at 2n + 1 line ends, where n

is the number of crossing lines. In addition, while it is true that

fully numerical time-domain methods such as the transmission

line matrix (TLM) method could be applied to this problem (as

noted above), the tremendous amount of computation required

makes the TLM method impractical for the most complex (i.e.,

“typical”) structures to be analyzed.

Finally, crosstalk between the parallel lines is treated in our

method by means of even–odd mode superposition. To clarify

the impact of crosstalk on the groups of lines, we conducted the

simulations depicted in Figs. 3 and 4 using the small line widths

and interline spacings typical of modern thin-film copper/poly-

imide multichip module substrates; the crosstalk effects between

lines 1 and 2, at both ends of these lines, are clearly visible. This

method does, however, ignore crosstalk from each driven line on

one signal level to each of the crossing lines on the orthogonal

signal layer; this approximation is based on the work of Rubin

[8], who made detailed calculations of the magnitude of this

crosstalk component and found it to be negligible.
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Spectral-Domain Analysis of Shielded Microstrip

Lines on Biaxially Aaisotropic Substrates

T. Q. Ho and B. Beker

Abstract —The spectral-domain technique has been extended to the

study of shielded mierostrip lines on bkixial substrates. The analysis
simultaneously includes both dielectric and magnetic anisotropy effects.
A fourth-order formulation leads to the determiuation of the appropr+

ate Green’s function for the structure. The characteristic equation is
formed through the application of the Galerkin method to the equations

resulting from the boundary conditions on the strip. Numerical results

are validated against the data previously published for special isotropic
and dielectrically anisotropic cases. New data on the propagation con-
stant of the shielded microstrip with different substrate perrnittivities
and permeabilities are presented to illustrate the effects of the material
parameters on the characteristics of the microstrip tine.

I. INTRODUCTION

In recent years there has been a steadily growing interest in

anisotropic materials for practical uses at millimeter-wave fre-
quencies. The wide variety of possible applications for such
media include antenna radomes, substrates for microstrip patch
antennas, microwave and millimeter-wave integrated circuits
(MIC’S), and ferrite nonreciprocal devices. As is well known, the
anisotropy in the material may occur naturally or it may be
purposely implanted during the fabrication process. In either
case, and in particular for MIC’S, anisotropic properties of

Manuscript received September 26, 1990; revised January 15, 1991.
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substrates must be included in the analysis, for otherwise serious
errors in their design can occur.

Since the early works of Owens and Edwards [1], [Z], a
number of authors have developed different analytical methods
for studying transmission lines on anisotropic media. Annong

these are Afexopolous [3], [4], Homo [5], and Koul et al. [6], who

used the quasi-static approach to study such problems, while

others, among them E1-Sherbiny [7], Kobayashi [8], Yang etal.

[9], and Krowne et al. [10], sought full-wave solutions. Afthough

numerous additional works dealing with anisotropic structures

are available and are well documented in the literature, the

major effort thus far has been directed toward transmission nines

with dielectrically anisotropic media. Until now, only a few

treatments have been devoted to lines on substrates that are

characterized by both [E] and [K] tensors. In one of them,

Mariki et al. [11] applied the transmission line matrix methc~d to

analyze a shielded line on anlsotropic substrate. However, no

data for magnetic anisotropy effects on propagation constants

were provided in that study. On the other hand, for an open

structure, Tsalamengas et al. [12] used a semianalytical tech-

nique which can be used for substrates that are characterized by

all nine elements of permittivity and permeability tensors.

In this paper, the spectral-domain method is extended to, the

study of shielded microstrip lines on biaxially dielectric and

magnetic anisotropic substrates. The solution to Maxwell’s equa-

tions, which for this problem reduces to two coupled second-

order differential equations and eventually to two uncoupled

fourth-order equations for two components of the electric field,

leads directly to the determination of Green’s function for the

structure. The derivation of the characteristic equation for the

propagation constant is carried out using Galerkin’s technique

in the Fourier domain. To demonstrate numerical efficiency of

the spectral-domain approach, results for the convergence stud-

ies are included along with samples of the time required for the

execution of the code. Numerical results calculated by this

meth,od for isotropic as well as dielectrically anisotropic sub-

strates are compared with the existing data, and in both cases a

very good agreement is observed. New data for the propagation

constant of the shielded lines on substrates simultaneously char-

acterized by different values of [e] and [K] are also generated.

II. ANALYTICAL FORMULATION

Consider the geometrj shown in Fig. 1, which illustrates the

cross section of the shielded microstrip line situated inside a

metal housing along with the coordinate system used in the

analysis. Furthermore, the cross section of the structure is

assumed to be uniform in the z direction. The metal strip is

taken as perfectly conducting and infinitely thin in the x direc-

tion. The lossless substrate, which has thickness hl and width b,

is characterized by homogeneous biaxial permittivity and perme-

ability tensors having the following forms:

00

[C]=EO ‘: ●yy o
0 0 e==

I-L.. o 0

[Pl=wo 0 ~YY 0
00 Pzz
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