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Frequency-Domain Solution for Coupled Striplines
with Crossing Strips

Guang-Wen Pan, Kenneth S. Olson, and Barry K. Gilbert

Abstract —In this paper we present a frequency-domain approach to
the modeling of the propagation of short-rise-time digital pulses along
groups of coupled striplines which are overcrossed or undercrossed by
orthogonally positioned signal conductors on adjacent signal planes in a
high-density circuit board or multichip module substrate. Although this
“crossing strip problem” has been described previously, most recently in
a contribution by Gu and Kong [1], the solution presented here has
several completely new features which are important in the application
of this method to real-world modeling problems in the following ways:
First, the new solution significantly simplifies the mathematical formu-
las which sum the multiple reflections and crosstalk components with
the primary digital pulse to generate the final waveform conformations
on the multiple conductors (four pages of equations in [1] are reduced
to only 16 lines). As a result, this method is much easier to implement
than earlier techniques, especially as a software kernel for a computer-
aided design tool. The method presented here also reduces the central
processing unit (CPU) time needed to execuie these solutions by a
nontrivial factor of 2—3 in comparison with the earlier method presented
by Gu and Kong. Second, the new method removes the earlier constraint
that the crossing strips on the orthogonal signal layer be uniformly
spaced; that is, nonuniformly spaced crossing strips are now supported
by the mathematical derivation. Third, the new derivation allows for
nonideal (i.e., “real-world”) voltage sources, in contrast to methods
described previously (e.g. [1]), which have permitted only ideal step and
ramp signals to be directly applied to the signal nets.

I. INTRODUCTION

In this paper we present a frequency-domain approach to the
modeling of the propagation of short-rise-time digital pulses
along groups of coupled striplines which are overcrossed or
undercrossed by orthogonal conductors on adjacent signal planes
in a circuit board or multichip module (MCM) substrate.

The problem of modeling the propagation of short-rise-time
digital signals along coupled striplines overcrossed or under-
crossed by unshieclded, orthogonal signal lines has been de-
scribed several times in the past, most recently in a contribution
by Gu and Kong [1]. In that paper, the effects of the crossing
lines on the signal-carrying lines were modeled as a change in
the characteristic impedance and two small “fringing field”
capacitors at the leading and trailing edges of each overcrossing
line, as depicted in Figs. 1 and 2. The model used by Gu and
Kong was in turn based on a simple but accurate closed-form
expression for charge and current distribution on parallel-plate
striplines first proposed by Kuester and Chang [2]. The Gu and
Kong solution was based on the use of Laplace transforms to
determine the transient responses of a coupled pair of striplines
having periodic crossing lines not shielded from the striplines.
Gu and Kong modeled the effects of crosstalk on the “listening
lines,” generated by the primary propagating wavefronts on the
“driven lines,” by the superposition of even- and odd-mode
components on the listening lines. A clarification to this paper
has also appeared recently [3]. It is also of interest to note that
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because the lines in this type of structure have frequently been
assumed to be lossless and dispersionless, a time-domain solu-
tion to this problem is also possible [4], [5]. While these physical
models have provided reasonably good approximate results [1],
the transient analysis of the propagating waves is rather cumber-
some, both in derivation and in software implementation.

Conversely, the solution presented here has several com-
pletely new features which are important in the application of
this method to real-world modeling problems. One is that the
frequency-domain solution proposed here is shown to be much
more compact and efficient than either the Laplace transform
or the time-domain solutions described by previous workers.
That is, this method significantly simplifies the mathematical
formulas which sum the multiple reflection and crosstalk com-
ponents with the primary digital pulse to generate the final
waveform conformation on the multiple conductors (four pages
of equations in [1] are reduced to only 16 lines). As a result, this
method is much easier to implement, especially as a software
kernel for a computer-aided design tool. The method presented
here also reduces the central processing unit (CPU) time needed
to execute these solutions by a not insignificant factor of 2-3 in
comparison with the earlier method [1]. A second feature is that
the new method removes the constraint that the crossing strips
on the orthogonal interconnect layer be uniformly separated
from one another. That is, unevenly spaced crossing strips
(which are commonly found in printed wiring boards and multi-
chip modules) are now supported by the mathematical deriva-
tion. A third feature is that the new derivation allows for
nonideal (i.e., “real-world”) voltage sources, in contrast to the
method described in [1], which permits only ideal step and ramp
signals to be directly applied.

II. FORMULATION

We wish to determine the transient responses at the near and
far ends of a pair of coupled transmission lines with k crossing
strips. Our method of solution involves two principal steps.
First, we establish the odd- and even-mode equivalent circuit
models as described in [1]. Second, a frequency-domain solution
is presented for the transient responses of the two equivalent
circuit models. The resulting waveforms are converted into the
time domain via an FFT, and then the voltage responses of the
actual structure are found from superposition.

Fig. 2(a) shows the basic configuration of one of the circuit
models (for either the even mode or odd mode), represented as
a series of transmission line segments cascaded together. The
electromotive force, V), is applied at the far left. We wish to
find the voltage response at the near end, Vy, and the far end,
Ve, of the equivalent circuit. A discontinuity capacitance, C,,
appears at each line terminal, representing the effect of the
edge of a crossing strip. The near-end voltage, V5, far-end
voltage, VD; near-end current, Io,’ and far-end current, ,» at
the ends of each transmission line segment are described by the
following equations (for further explanation, see [6]):

Vi, =G, +ePPGy (1)
Iy, = ‘Zl—l(Go, - e_IB’D’GD,) 2
Vp =ePPGy +Gp, 3)
Ip, = %(e_]B'D'Gol - GD,) (4)
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(a) Even- or odd-mode equivalent circuit. ¥, and ¥ may be solved for each mode; then, using superposition [7],

the actual near-end and far-end voltage responses may be found. (b) Directions of currents 10 and 1, Dy Note that I0 enters
transmission line segment i from the source end and I, p, €Xits transmission line segment i from the load end. Transmission

line segment ¢ has a length D,

where i is the transmission line segment under consideration, D,
is the length of line segment i, Z, is the characteristic impedance
of line segment i, B, = wy/L,C,, and G, and G, are defined in
[6 egs. (19)—(22)] as the near-end incident and far-end reflected
“modal intensities,” respectively, of line segment i. The values
of C, L,, Z,, and C, may be found from equations presented in
[1] and [7]. Fig. 2(b) shows the defined direction of the currents
10 and 1, p, on line segment i. By examining the first transmis-
sion line segment we see that I}, = V0 Also, by examining the
last transmission line segment (2k + 1), we note that V, = =Vporor
We need to describe mathematically the connectivity of the
transmission line segments at each terminal. Once the equations
at each line terminal are found (egs. (5), (7), (8), and (11)), we
can incorporate (1)-(4) into them to obtain a set of linear
equations with the modal intensities of each line segment (Gol
and Gp ) as the unknowns (egs. (6), (9), (10), and (12)). Then,
once the modal intensities are found, we simply solve (1) and (3)
at the line ends to obtain the near-end and far-end modal

voltage responses, V, and Vj (that is, Vo, and Vp ). The

voltage responses of the even and odd modes may be combined
as shown in [1] to obtain the actual voltage response waveforms
of the active and passive lines.

Looking at the source end of the cascaded transmission line
segments in the upper portion of Fig. 2(a), we see that ¥, can
be described (in the frequency domain) in terms of the voltage
and current at the beginning of the first transmission line

segment (V, and I, ):

Vo, + Rsly, =V, (%)

where Rj is the source resistance. By substituting the right-hand
sides of (1) and (2) into (5), we obtain V¥, in terms of the modal
intensities:

RS IES
= = — 2 | p—IBD
Vm—(1+ 1)G01+(1 l)e BPIG

(6)
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Fig. 3. Transient response for the coupled stripline of Fig. 1 using an alternating (i.e., nonconstant) spacing between the
crossing strips of 0.875 mm and 0.375 mm, respectively, with a line width of 0.125 mm. Left panel: Near-end voltages. Right
panel: Far-end voltages. The rise time of the input signal is 5 ps.

For each intermediate terminal, two equations can be written,
one by equating the voltage at the end of the previous transmis-
sion line segment, i, with the voltage at the beginning of the
next transmission line segment, i +1, and the other by summing
the currents leaving the terminal:

VD, = (7)
(8)

Equations (7) and (8), rearranged in terms of the modal intensi-
ties, become

0,41

—Ip + 1, + jwCaVp =0.

0=e_’B‘DLGOl+GDl—Golﬂ—e"’B’“D'“GDM 9
and
0 ( ! C ) 8D, ( ! C )G
=|—-—=+jo eIPEG) =+ jo
Z d 0, Z, a1YDp,
+ 00— eﬂBlHD'HGD,H' (10)

Zl+1 Zl+1

At the load end of the cascaded transmission line system, the
voltage and current are related by

(11)

where R; is the load resistance and & is the number of crossing
strips. Equation (11), rewritten in terms of the modal intensities,
becomes

0= (1 -

+(1+

VD2k+1 =Vp= RLID2k+1

2k +1

)e_]B2k+lD2k+1GO
Zok+1

)GDzkH' (12)

If there are k crossing strips in the configuration, then (6),
(9), (10), and (12) result in 4k +2 linear equations with un-

2k+1

knowns G, ,Gg,," ", Gy, ., and Gp,Gp . -+, Gp, . This set
of equations can be solved for each frequency using a mathemat-
ical library such as IMSL. Once the modal intensities are found,
the voltages at the near end and the far end, Vy =V, and
Vg =Vp,,. » can be found from (1) and (3). By converting to the
time domain (via an inverse FFT), we can then obtain the
desired even- and odd-mode near- and far-end voltage re-
sponses.

The previous discussions are valid for both the even and the
odd mode with the corresponding even and odd parameters.
Therefore, the even and odd mode voltages at the near and far
ends, namely, VX9, V{, V{9 and V{?, can be evaluated.
Finally, the waveforms V" (at the near end of the active line),
V£V (at the far end of the active line), V@ (at the near end of
the passive line), and V® (at the far end of the passive line) can
be obtained by the superposition equations [3]:

v =2 [V + Vi) (13)
Ve = % [V -V (14)
Vo= % [V + V] (15)
VP = % [V -], (16)

An example demonstrates the ability of the frequency-domain
method to simulate more generalized structures such as nonuni-
form spacing between the crossing strips. In this example, we
employed slightly different numerical values for the dimensions
in Fig. 1; in particular, we varied the spacing between the
crossing strips in an alternation between 0.375 mm and 0.875
mm. The rise time of the signal injected into the driven line was
5 ps. Fig. 3 shows the voltage responses within this nonuniform
structure as calculated by the frequency-domain method; 256
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Fig. 4.

Simulated waveforms of near-end and far-end voltage transient responses for theoretical coupled stripline structure

in a comparison of the frequency-domain method presented here with the Laplace transform solution of [1].

samples were used for the FFT and inverse FFT in this example
and in Fig. 4. Of particular interest is the way in which the
spacing between crossing strips affects the ringing of the wave-
form. Looking at V(N1), we see that immediately after the
change in logic states, it appears that the duration of each
perturbation in the waveform is related to spacing between
crossing strips. Continuing in time, the definition of the wave-
form becomes less clear, as the reflections from additional
crossing strips reach the near end of the line.

III. ConNcLusioN

Although the general case of an arbitrary number of asym-
metrical lines can be modeled by, for instance, the full-wave
solution, the spectral-domain analysis method, or the TLM
method, the physical model proposed by Gu and Kong [1]
utilizing results from Kuester and Chang [2] still provides a
straightforward yet excellent approximation to the problem of
parallel striplines with orthogonal, unshielded crossing lines.
The present paper has also employed this physical model. A
major advantage of this method over [1] and [2] lies in the fact
that it significantly reduces the mathematical formulas employed
in creating a summation of multiple transmitted and reflected
waves, from over four pages of equations [1] down to only 16
lines. Consequently, the new frequency-domain method de-
scribed here is much easier to comprehend theoretically and, of
equal significance and considerable importance, is also much
simpler to implement as a software kernel for an electromag-
netic modeling computer-aided design {CAD) tool. In addition,
any voltage input waveform may be used, as long as it can be
transformed accurately into the frequency domain by means of
an FFT. In comparison, the Laplace transform solution [1]
requires a ramp or step input. Further, as demonstrated by our
example, the frequency-domain method can also simulate un-
even spacing of the overcrossing strips on the orthogonal signal
layer. Thus, the degradation effects of the total number of
crossing strips, and of their spacing, can now be observed
directly in the simulation results. Uneven line spacing is directly
supported because in the determination of the set of 4k +2
linear equations, each distance D, may be distinct for each

transmission line segment i. Fig. 4 shows a simulation of a
coupled stripline structure with 25 evenly spaced crossing strips,
in which the frequency-domain method developed here is com-
pared with the Laplace transform solution given in [1]. This
example contains evenly spaced crossing strips to show the
comparison. The accuracy of our method in comparison with
previously published results is evident from this figure.

Time-domain solutions to this type of problem have been
described previously; however, in our direct observation, the
time-domain solution of this type of electromagnetic structure
[4] is not particularly efficient in the solution of the type of
structure discussed here. The time-domain methods typically
handle only reflections at two ends of the transmission lines
(i.e., a “single source, single destination” interconnect), while
this method can simulate the effects at 21 + 1 line ends, where n
is the number of crossing lines. In addition, while it is true that
fully numerical time-domain methods such as the transmission
line matrix (TLM) method could be applied to this problem (as
noted above), the tremendous amount of computation required
makes the TLM method impractical for the most complex (i.e.,
“typical”) structures to be analyzed.

Finally, crosstalk between the parallel lines is treated in our
method by means of even—odd mode superposition. To clarify
the impact of crosstalk on the groups of lines, we conducted the
simulations depicted in Figs. 3 and 4 using the small line widths
and interline spacings typical of modern thin-film copper /poly-
imide multichip module substrates; the crosstalk effects between
lines 1 and 2, at both ends of these lines, are clearly visible. This
method does, however, ignore crosstalk from each driven line on
one signal level to each of the crossing lines on the orthogonal
signal layer; this approximation is based on the work of Rubin
[8], who made detailed calculations of the magnitude of this
crosstalk component and found it to be negligible.
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Spectral-Domain Analysis of Shielded Microstrip
Lines on Biaxially Anisotropic Substrates

T. Q. Ho and B. Beker

Abstract —The spectral-domain technique has been extended to the
study of shielded microstrip lines on biaxial substrates. The analysis
simultaneously includes both dielectric and magnetic anisotropy effects.
A fourth-order formulation leads to the determination of the appropri-
ate Green’s function for the structure. The characteristic equation is
formed through the application of the Galerkin method to the equations
resulting from the boundary conditions on the strip. Numerical results
are validated against the data previously published for special isotrepic
and dielectrically anisotropic cases. New data on the propagation con-
stant of the shielded microstrip with different substrate permittivities
and permeabilities are presented to illustrate the effects of the material
parameters on the characteristics of the microstrip line.

I. INTRODUCTION

In recent years there has been a steadily growing interest in
anisotropic materials for practical uses at millimeter-wave fre-
quencies. The wide variety of possible applications for such
media include antenna radomes, substrates for microstrip patch
antennas, microwave and millimeter-wave integrated circuits
(MIC’s), and ferrite nonreciprocal devices. As is well known, the
anisotropy in the material may occur naturally or it may be
purposely implanted during the fabrication process. In either
case, and in particular for MIC’s, anisotropic properties of
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substrates must be included in the analysis, for otherwise serious
errors in their design can occur.

Since the early works of Owens and Edwards [1], [2], a
number of authors have developed different analytical methods
for studying transmission lines on anisotropic media. Among
these are Alexopolous [3], [4], Horno [5], and Koul et al. [6], who
used the quasi-static approach to study such problems, while
others, among them El-Sherbiny [7], Kobayashi [8], Yang et al.
[9], and Krowne et al. [10], sought full-wave solutions. Although
numerous additional works dealing with anisotropic structures
are available and are well documented in the literature, the
major effort thus far has been directed toward transmission lines
with dielectrically anisotropic media. Until now, only a few
treatments have been devoted to lines on substrates that are
characterized by both [e] and [u] tensors. In one of them,
Mariki et al. [11] applied the transmission line matrix method to
analyze a shielded line on anisotropic substrate. However, no
data for magnetic anisotropy effects on propagation constants
were provided in that study. On the other hand, for an open
structure, Tsalamengas et al. [12] used a semianalytical tech-
nique which can be used for substrates that are characterized by
all nine elements of permittivity and permeability tensors.

In this paper, the spectral-domain method is extended to the
study of shielded microstrip lines on biaxially dielectric and
magnetic anisotropic substrates. The solution to Maxwell’s equa-
tions, which for this problem reduces to two coupled second-
order differential equations and eventually to two uncoupled
fourth-order equations for two components of the electric field,
leads directly to the determination of Green’s function for the
structure. The derivation of the characteristic equation for the
propagation constant is carried out using Galerkin’s technique
in the Fourier domain. To demonstrate numerical efficiency of
the spectral-domain approach, results for the convergence stud-
ies are included along with samples of the time required for the
execution of the code. Numerical results calculated by this
method for isotropic as well as dielectrically anisotropic sub-
strates are compared with the existing data, and in both cases a
very good agreement is observed. New data for the propagation
constant of the shielded lines on substrates simultaneously char-
acterized by different values of [e] and [x] are also generated.

II. ANALYTICAL FORMULATION

Consider the geometry shown in Fig. 1, which illustrates the
cross section of the shielded microstrip line situated inside a
metal housing along with the coordinate system used in the
analysis. Furthermore, the cross section of the structure is
assumed to be uniform in the z direction. The metal strip is
taken as perfectly conducting and infinitely thin in the x direc-
tion. The lossless substrate, which has thickness A, and width b,
is characterized by homogeneous biaxial permittivity and perme-
ability tensors having the following forms:

€, 0O 0
[e]=€| O €, O (1a)
0 0 €,
Bee 00
[n]=no 0 Hyy 0 (1b)
0 0 u,
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